본문

Theoretical Developments in Lattice Gauge Theory for Applications in Double-Beta Decay Processes and Quantum Simulation- [electronic resource]
Theoretical Developments in Lattice Gauge Theory for Applications in Double-Beta Decay Pro...
내용보기
Theoretical Developments in Lattice Gauge Theory for Applications in Double-Beta Decay Processes and Quantum Simulation- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214101555
ISBN  
9798380580915
DDC  
530
저자명  
Kadam, Saurabh Vasant.
서명/저자  
Theoretical Developments in Lattice Gauge Theory for Applications in Double-Beta Decay Processes and Quantum Simulation - [electronic resource]
발행사항  
[S.l.]: : University of Maryland, College Park., 2023
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2023
형태사항  
1 online resource(318 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 85-04, Section: B.
주기사항  
Advisor: Davoudi, Zohreh.
학위논문주기  
Thesis (Ph.D.)--University of Maryland, College Park, 2023.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약Nuclear processes have played, and continue to play, a crucial role in unraveling the fundamental laws of nature. They are governed by the interactions between hadrons, and in order to draw reliable conclusions from their observations, it is necessary to have accurate theoretical predictions of hadronic systems. The strong interactions between hadrons are described by quantum chromodynamics (QCD), a non-Abelian gauge theory with symmetry group SU(3). QCD predictions require non-perturbative methods for calculating observables, and as of now, lattice QCD (LQCD) is the only reliable and systematically improvable first-principles technique for obtaining quantitative results. LQCD numerically evaluates QCD by formulating it on a Euclidean space-time grid with a finite volume, and requires formal prescriptions to match numerical results with physical observables.This thesis provides such prescriptions for a class of rare nuclear processes called double beta decays, using the finite volume effects in LQCD framework. Double beta decay can occur via two different modes: two-neutrino double beta decay or neutrinoless double beta decay. The former is a rare Standard Model transition that has been observed, while the latter is a hypothetical process whose observation can profoundly impact our understating of Particle Physics. The significance and challenges associated with accurately predicting decay rates for both modes are emphasized in this thesis, and matching relations are provided to obtain the decay rate in the two-nucleon sector. These relations map the hadronic decay amplitudes to quantities that are accessible via LQCD calculations, namely the nuclear matrix elements and two-nucleon energy spectra in a finite volume. Finally, the matching relations are employed to examine the impact of uncertainties in the future LQCD calculations. In particular, the precision of LQCD results that allow constraining the low energy constants that parameterize the hadronic amplitudes of two-nucleon double beta decays is determined.Lattice QCD, albeit being a very successful framework, has several limitations when general finite-density and real-time quantities are concerned. Hamiltonian simulation of QCD is another non-perturbative method of solving QCD that, by its nature, does not suffer from those limitations. With the advent of novel computational tools, like tensor network methods and quantum simulation, Hamiltonian simulation of lattice gauge theories (LGTs) has become a reality. However, different Hamiltonian formulations of the same LGT can lead to different computational-resource requirements with their respective system sizes. Thus, a search for efficient formulations of Hamiltonian LGT is a necessary step towards employing this method to calculate a range of QCD observables. Toward that goal, a loop-string-hadron (LSH) formulation of an SU(3) LGT coupled to dynamical matter in 1+1 dimensions is developed in this thesis. Development of this framework is motivated by recent studies of the LSH formulation of an SU(2) LGT that is shown to be advantageous over other formulations, and can be extended to higher-dimensional theories and ultimately QCD.
일반주제명  
Physics.
일반주제명  
Quantum physics.
일반주제명  
Theoretical physics.
키워드  
Double beta decay
키워드  
Hamiltonian gauge theory
키워드  
Lattice QCD
키워드  
Quantum chromodynamics
키워드  
Quantum simulation
기타저자  
University of Maryland, College Park Physics
기본자료저록  
Dissertations Abstracts International. 85-04B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 소재불명신고
  • 나의폴더
  • 우선정리요청
  • 비도서대출신청
  • 야간 도서대출신청
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TF05943 전자도서
마이폴더 부재도서신고 비도서대출신청

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련 인기도서

로그인 후 이용 가능합니다.