본문

Realizing the Applications of Nonlinear Encoding in MRI- [electronic resource]
Realizing the Applications of Nonlinear Encoding in MRI - [electronic resource]
내용보기
Realizing the Applications of Nonlinear Encoding in MRI- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214101922
ISBN  
9798380858946
DDC  
616
저자명  
Froelich, Taylor William.
서명/저자  
Realizing the Applications of Nonlinear Encoding in MRI - [electronic resource]
발행사항  
[S.l.]: : University of Minnesota., 2023
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2023
형태사항  
1 online resource(118 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 85-05, Section: B.
주기사항  
Advisor: Garwood, Michael.
학위논문주기  
Thesis (Ph.D.)--University of Minnesota, 2023.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약Magnetic Resonance Imaging (MRI) possesses the unique ability to capture a wide range of physiological attributes with high spatial resolution. This flexibility has allowed researchers and medical professionals to not only study, but diagnose, an array of disease states and illnesses that previously required invasive means. However, despite its' tremendous advantages most of the world's population lacks ready access to this diagnostic tool, often having to travel great distances just to reach a scanner. MRI currently faces a severe inequity in both accessibility and utilization due to the high costs associated with obtaining, transporting, and maintaining a traditional scanner. Hence MRI is generally limited to the middle and upper classes in wealthier countries; creating a tremendous need for this diagnostic tool to be disseminated to regions with lower per capita income.The primary goal of this work is to explore several approaches to the challenges of under-utilization and inaccessibility that the field of MRI faces. All of the techniques presented here have shown promise in improving the accessibility of MRI by either eliminating or replacing costly components without sacrificing on the diagnostic quality of the images. The first approach explored the feasibility of employing a low power, nonlinear gradient to perform slice selection and phase refocusing in a traditional spin-echo type sequence. Showing that it is not only possible to image in a permanent hyperboloidal gradient, but also observing the benefits to phase compensation and resolution, thus opening the door to exploring nonlinear encoding fields. The next approach sought to eliminate pulsed B0 gradients in favor of radio-frequency (RF) based gradients. This approached utilized a nonlinear, spatially-varying RF field to encode information in a fast-spin echo sequence. As a proof of concept, only one dimension utilized this approach but the work can be easily extended to 2D. The final approach looked at the logistics of creating and implementing a portable MRI system. This required the design and installation of nonstandard hardware in all aspects of the imaging system; including a novel high temperature superconducting magnet, a multi-channel digital spectrometer, and a multi-channel gradient array capable of creating arbitrary encoding field.
일반주제명  
Medical imaging.
일반주제명  
Physics.
키워드  
Magnetic Resonance Imaging
키워드  
Physiological attributes
키워드  
Radio-frequency
키워드  
Scanner
기타저자  
University of Minnesota Physics
기본자료저록  
Dissertations Abstracts International. 85-05B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 소재불명신고
  • 나의폴더
  • 우선정리요청
  • 비도서대출신청
  • 야간 도서대출신청
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TF06275 전자도서
마이폴더 부재도서신고 비도서대출신청

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련 인기도서

로그인 후 이용 가능합니다.