본문

Climate, Clouds, and Convection on Earth and Titan- [electronic resource]
Climate, Clouds, and Convection on Earth and Titan - [electronic resource]
내용보기
Climate, Clouds, and Convection on Earth and Titan- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214101924
ISBN  
9798380797207
DDC  
551.5
저자명  
Spaulding-Astudillo, Francisco Eduardo.
서명/저자  
Climate, Clouds, and Convection on Earth and Titan - [electronic resource]
발행사항  
[S.l.]: : University of California, Los Angeles., 2023
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2023
형태사항  
1 online resource(174 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 85-05, Section: B.
주기사항  
Advisor: Mitchell, Jonathan L.
학위논문주기  
Thesis (Ph.D.)--University of California, Los Angeles, 2023.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약The planets and moons in the solar system present a unique opportunity for enriching our understanding of Earth. The remarkable diversity of atmospheric compositions, dynamics, and weather patterns requires us to move beyond Earth-centric paradigms and search for more general theories that can explain the similarities and differences between them. In this work, Saturn's moon Titan is chosen as the point of comparison with Earth for its compositional similarity, active hydrological cycle, and distinct atmospheric dynamics. We investigate the governing physics of climate, clouds, and convection on both bodies with the goal of learning general truths that broadly apply to most, if not all, moist planetary atmospheres. We focus, in particular, on the effects of low to high moisture concentration in the atmosphere. First, it is found that Earth's climate is remarkably stable to significant changes in atmospheric moisture content. In Earth-like climate states, the vapor pressure path at the anvil cloud level is fixed due to spectroscopic properties of water vapor. The largest changes in Earth's climate occur at tipping points that involve transitions from multi-layered to single-layered convective clouds. Second, we demonstrate that the height of congestus cloud-top formation in the tropics is driven by a mid-tropospheric decline in the water vapor emissivity in clear-sky regions, which causes clouds to detrain preferentially between 5-6 km. This clear-sky theory of cloud formation is derived from basic assumptions of mass and energy balance and so should generalize well to other locations on Earth or to other planets and different atmospheric compositions. Third, we show that the transition from steady, quasi-equilibrium (QE) precipitation on Earth to non-steady, relaxed oscillator (RO) precipitation on Titan is predicted by the breakdown of a heat engine model of convection with increasing surface temperature and/or atmospheric moisture content. The breakdown of quasi-equilibrium dynamics occurs due to an imbalance between the work performed by the convective heat engine and the heat of condensation released by the convective motions themselves. The heat engine perspective offers a robust point of comparison between the atmospheres of Earth and Titan based on the first and second laws of thermodynamics, which are system invariant. The heat engine model is, in fact, agnostic of the working fluid and the condensing substance and, arguably, is the best framework to explain why dynamical similarities between present day Titan and a much warmer Earth exist.
일반주제명  
Atmospheric sciences.
일반주제명  
Geophysics.
일반주제명  
Climate change.
키워드  
Clear sky convergence
키워드  
Heat engine
키워드  
Precipitation
키워드  
Relaxation oscillator
키워드  
Atmospheric compositions
기타저자  
University of California, Los Angeles Geophysics & Space Physics 0406
기본자료저록  
Dissertations Abstracts International. 85-05B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 소재불명신고
  • 나의폴더
  • 우선정리요청
  • 비도서대출신청
  • 야간 도서대출신청
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TF06283 전자도서
마이폴더 부재도서신고 비도서대출신청

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련 인기도서

로그인 후 이용 가능합니다.