본문

Lithium Plating Detection, Quantification, and Modeling to Enable Lithium-Ion Battery Fast-Charging- [electronic resource]
Lithium Plating Detection, Quantification, and Modeling to Enable Lithium-Ion Battery Fast...
내용보기
Lithium Plating Detection, Quantification, and Modeling to Enable Lithium-Ion Battery Fast-Charging- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214101643
ISBN  
9798380367585
DDC  
660
저자명  
Konz, Zachary Martin.
서명/저자  
Lithium Plating Detection, Quantification, and Modeling to Enable Lithium-Ion Battery Fast-Charging - [electronic resource]
발행사항  
[S.l.]: : University of California, Berkeley., 2023
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2023
형태사항  
1 online resource(110 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
주기사항  
Advisor: McCloskey, Bryan D.
학위논문주기  
Thesis (Ph.D.)--University of California, Berkeley, 2023.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약A key challenge for energy storage and conversion technologies is finding simple, reliable methods that can identify device failure and prolong lifetime. Lithium plating is a well-known degradation process that prevents Li-ion battery fast charging, which is essential to reduce electric vehicle 'range anxiety' and enable emerging technologies such as aerial drones and high-performance portable electronics. The ability to detect the initial onset of lithium plating from easily accessible voltage measurements would greatly improve battery safety and feedback controls modeling. In this work, we first highlight the application of a differential open-circuit voltage analysis (dOCV) to detect when Li plating begins during a single charge for room temperature fast charging. We also show that dOCV can identify the Li plating onset during cycling with sensitivity of 1 mg plated Li per gram graphite, equivalent to 1% of the graphite capacity, indicating that this method has commercial promise for on-line Li detection.Next, we demonstrate the power of simple, accessible, and high-throughput cycling techniques to quantify irreversible Li plating spanning data from over 200 cells. We first observe the effects of energy density, charge rate, temperature, and State-of-Charge (SOC) on lithium plating, use the results to refine mature physics-based electrochemical models, and provide an interpretable empirical equation for predicting the plating onset SOC. We then explore the reversibility of lithium plating and its connection to electrolyte design for preventing irreversible Li accumulation. Finally, we design a method to quantify in-situ Li plating for commercially relevant Graphite|LiNi0.5Mn0.3Co0.2O2 (NMC) cells and compare with results from the experimentally convenient Li|Graphite configuration. The hypotheses and abundant data in this section were generated primarily with equipment universal to the battery researcher, encouraging further development of innovative testing methods and data processing that enable rapid battery engineering.Finally, we consider the challenge of highly variable charging conditions possible in commercial cells. We combine pseudo-2D electrochemical modeling with data visualization methods to reveal important relationships between the measurable cell voltage and difficult-to-predict Li plating onset criteria. An extensively validated model is used to compute lithium plating for thousands of multistep charging conditions spanning diverse rates, temperatures, states-of-charge (SOC), and cell aging. We observe an empirical cell operating voltage limit below which plating does not occur across all conditions, and this limit varies with battery state-of-charge and aging. A model sensitivity analysis also indicates that when comparing two charging voltage profiles, the capacity difference at 4.0V correlates well with the difference in the plating onset capacity. These results encourage simple strategies for Li plating prevention that are complementary to existing battery controls. 
일반주제명  
Chemical engineering.
일반주제명  
Energy.
일반주제명  
Sustainability.
키워드  
Li-ion battery
키워드  
Fast-charging
키워드  
Lithium plating
키워드  
Lithium-ion
키워드  
Electrochemical models
기타저자  
University of California, Berkeley Chemical Engineering
기본자료저록  
Dissertations Abstracts International. 85-03B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 소재불명신고
  • 나의폴더
  • 우선정리요청
  • 비도서대출신청
  • 야간 도서대출신청
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TF06428 전자도서
마이폴더 부재도서신고 비도서대출신청

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련 인기도서

로그인 후 이용 가능합니다.