본문

Synaptic Activity Couples Inducible Transcription to Genome Preservation in the Mammalian Brain- [electronic resource]
Synaptic Activity Couples Inducible Transcription to Genome Preservation in the Mammalian ...
내용보기
Synaptic Activity Couples Inducible Transcription to Genome Preservation in the Mammalian Brain- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214100104
ISBN  
9798379613662
DDC  
616
저자명  
Gilliam, Daniel T.
서명/저자  
Synaptic Activity Couples Inducible Transcription to Genome Preservation in the Mammalian Brain - [electronic resource]
발행사항  
[S.l.]: : Harvard University., 2023
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2023
형태사항  
1 online resource(188 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
주기사항  
Advisor: Greenberg, Michael E.
학위논문주기  
Thesis (Ph.D.)--Harvard University, 2023.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약Neuronal activity is critical for adaptive circuit remodeling but poses an inherent risk to the stability of the genome across the long lifespan of post-mitotic neurons. In addition to the potential genomic damage from reactive metabolic byproducts generated during periods of heightened neuronal activity, the rapid activity-induced changes in gene expression that follow neuronal stimulation are known to generate recurrent DNA double-strand breaks (DSBs) at critical genomic regulatory elements such as the promoters of inducible genes. Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened synaptic activity is not known. Here we identify a neuronal-specific DNA repair mechanism embedded within the neuronal response to stimulation via a new form of the NuA4 chromatin modifying complex that assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4-NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4- NuA4 are partially protected from age-dependent accumulation of somatic mutations. Impaired NPAS4-NuA4 signaling leads to a cascade of cellular defects including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition, and genome instability, ultimately culminating in reduced organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental disorders and autism. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation and whose disruption may contribute to developmental disorders, neurodegeneration, and aging. 
일반주제명  
Neurosciences.
일반주제명  
Molecular biology.
일반주제명  
Genetics.
키워드  
Neurodegeneration
키워드  
Developmental disorders
키워드  
Neuronal activity
키워드  
DNA repair mechanism
키워드  
Genome instability
기타저자  
Harvard University Biology Molecular and Cellular
기본자료저록  
Dissertations Abstracts International. 84-12B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 소재불명신고
  • 나의폴더
  • 우선정리요청
  • 비도서대출신청
  • 야간 도서대출신청
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TF06447 전자도서
마이폴더 부재도서신고 비도서대출신청

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련 인기도서

로그인 후 이용 가능합니다.