본문

Quantum Enhanced Impulse Measurements and Their Applications in Searches for Dark Matter- [electronic resource]
Quantum Enhanced Impulse Measurements and Their Applications in Searches for Dark Matter -...
내용보기
Quantum Enhanced Impulse Measurements and Their Applications in Searches for Dark Matter- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214101555
ISBN  
9798380580823
DDC  
530.1
저자명  
Ghosh, Sohitri.
서명/저자  
Quantum Enhanced Impulse Measurements and Their Applications in Searches for Dark Matter - [electronic resource]
발행사항  
[S.l.]: : University of Maryland, College Park., 2023
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2023
형태사항  
1 online resource(177 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 85-04, Section: B.
주기사항  
Advisor: Taylor, Jacob M.;Shawhan, Peter.
학위논문주기  
Thesis (Ph.D.)--University of Maryland, College Park, 2023.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약Optomechanical systems have enabled a variety of novel sensors that transduce an external force on a mechanical sensor to an optical signal which can be read out through different measurement techniques. Based on recent advances in these sensing technologies, we suggest that heavy dark matter candidates around the Planck mass range could be detected solely through their gravitational interaction. After our understanding of the possibility of direct gravitational detection of dark matter, a coalition of researchers came together to form a lasting collaboration - Windchime - to explore the potential implementation and impact of this approach. With this ultimate goal in mind, the Windchime collaboration is developing the necessary techniques, systems, and experimental apparatus using arrays of optomechanical sensors that operate in the regime of high-bandwidth force detection, i.e., impulse metrology. One of the key challenges in achieving more sensitive measurements is to mitigate the noise which arises due to the fundamental uncertainty principle while trying to precisely measure the variable of interest. Today's state-of-the-art sensors can be limited by this added noise due to the act of measurement itself. One of the techniques to go beyond this limit involves squeezing of the light used for measurement. The other technique is using backaction evading measurements by estimating quantum non-demolition operators - typically the momentum of a mechanical resonator well above its resonance frequency.In our work, we have explored various backaction evading techniques based on this principle. In the first part of the thesis, we present the impulse metrology task in the context of gravitational detection of dark matter. In the next part, we present a practical way to achieve backaction evading measurements in the optical domain. In the subsequent part, we analyze the theoretical limits to noise reduction while combining different quantum enhanced readout techniques for these mechanical sensors. In the last part of the thesis, we explore the possibility of a microwave domain readout for maximizing the energy efficiency and noise reduction while having a scalable system for our dark matter detection purpose.
일반주제명  
Quantum physics.
일반주제명  
Astrophysics.
일반주제명  
Optics.
키워드  
Dark matter
키워드  
Optomechanical systems
키워드  
Gravitational detection
키워드  
Mechanical resonator
키워드  
Windchime collaboration
기타저자  
University of Maryland, College Park Physics
기본자료저록  
Dissertations Abstracts International. 85-04B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 소재불명신고
  • 나의폴더
  • 우선정리요청
  • 비도서대출신청
  • 야간 도서대출신청
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TF07291 전자도서
마이폴더 부재도서신고 비도서대출신청

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련 인기도서

로그인 후 이용 가능합니다.