본문

Modeling Ferroelectric Materials and Synthetic Jet Actuators- [electronic resource]
Modeling Ferroelectric Materials and Synthetic Jet Actuators - [electronic resource]
내용보기
Modeling Ferroelectric Materials and Synthetic Jet Actuators- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214101229
ISBN  
9798379718893
DDC  
621
저자명  
Sheng, Michael Thomas.
서명/저자  
Modeling Ferroelectric Materials and Synthetic Jet Actuators - [electronic resource]
발행사항  
[S.l.]: : University of California, Los Angeles., 2023
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2023
형태사항  
1 online resource(171 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
주기사항  
Advisor: Carman, Gregory P.;Lynch, Christopher S.
학위논문주기  
Thesis (Ph.D.)--University of California, Los Angeles, 2023.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약Ferroelectric materials like BaTiO3 and PZT are known for their ability to strongly couple electrical and mechanical energy, which makes them widely used as transducers, sensors, or actuators. There is an ongoing search for better performing materials to optimize device performance. Single crystal relaxor ferroelectrics like PMN-PT and PIN-PMN-PT near the morphotropic phase boundary (MPB) have garnered attention for their large electromechanical properties relative to PZT. A better understanding of the underlying physics will help in the search for next generation materials and optimizing device design. This dissertation focuses on modeling: 1) phase transformations in ferroelectrics materials and 2) novel piezoelectric synthetic jet actuators (SJAs). Ferroelectric material models are known to significantly overpredict the coercive field. This is attributed to a combination of domain wall motion and the presence of metastable wells in the Landau-Devonshire energy function. These metastable wells also prevent current models from capturing important phase transition behavior. An improved energy function for rhombohedral PIN-PMN-PT near the MPB with better thermodynamic stability was developed and used to investigate the effect energy fluctuations have on phase transformations. Results showed that accounting for fluctuations produced closer predictions to experimental observations, including the lower coercive field for switching and the forward and reverse phase transformations during loading and unloading. Two methods to implement these fluctuations in phase field models were assessed. Static local fields were preferred over time-varying noise due to convergence and reproducibility concerns with the latter. For SJAs, current models are unable to efficiently and accurately model novel SJAs that deviate significantly from an ideal Helmholtz resonator. A hybrid finite-element and lumped-element modeling approach was developed to provide more flexibility to explore novel material and geometric designs. This hybrid model reduced reliance on fitting parameters through FEM and a formula to estimate the loss coefficient was proposed. Predicted performance of thin cavity SJAs using the hybrid approach was shown to be in much better agreement with experiments than the prior models. This work provides a deeper understanding of modeling ferroelectric materials and SJAs, and the developed models can be used to help guide material and device design.
일반주제명  
Mechanical engineering.
일반주제명  
Fluid mechanics.
일반주제명  
Materials science.
일반주제명  
Chemical engineering.
키워드  
Ferroelectric material
키워드  
Flow control
키워드  
Landau-Devonshire energy function
키워드  
Phase field model
키워드  
PIN-PMN-PT
키워드  
Synthetic jet actuators
키워드  
Morphotropic phase boundary
기타저자  
University of California, Los Angeles Mechanical Engineering 0330
기본자료저록  
Dissertations Abstracts International. 84-12B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 소재불명신고
  • 나의폴더
  • 우선정리요청
  • 비도서대출신청
  • 야간 도서대출신청
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TF07430 전자도서
마이폴더 부재도서신고 비도서대출신청

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련 인기도서

로그인 후 이용 가능합니다.