본문

Resilience Analysis for Water Distribution Networks- [electronic resource]
Resilience Analysis for Water Distribution Networks - [electronic resource]
내용보기
Resilience Analysis for Water Distribution Networks- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214095920
ISBN  
9798380367332
DDC  
624
저자명  
Wu, Renjie.
서명/저자  
Resilience Analysis for Water Distribution Networks - [electronic resource]
발행사항  
[S.l.]: : University of California, Berkeley., 2022
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2022
형태사항  
1 online resource(210 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
주기사항  
Advisor: Soga, Kenichi.
학위논문주기  
Thesis (Ph.D.)--University of California, Berkeley, 2022.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약Cities and people who live in them require clean water to thrive. However, the conditions of water infrastructure in the United States are concerning. Many water distribution networks (WDNs) are serving beyond their intended design life. The aging water infrastructure is reflected by the frequent water main break events across the country in recent years. Using data mining and natural language processing (NLP) techniques, this study validates the commonly-hold opinions that water main breaks cause severe societal troubles, including repair cost, local traffic disturbance, and water quality related health issues.Hazard events often damage the already in-risk aging WDNs. To estimate the hazard impact (e.g. earthquake) to a WDN, this study developed a WDN hydraulics simulator, HydrauSim, which can quantify the WDN hydraulics (e.g., flow rate, etc.) under normal or damaged states. HydrauSim is highly optimized to be computationally efficient, making it feasible for large-scale networks and tasks that require repeated simulation runs (e.g., Monte Carlo simulation). Using HydrauSim, the post-earthquake response of East Bay Municipal Utility District's (EBMUD) main gravity feed zone in the San Francisco Bay area is simulated. Around 200-800 pipes were estimated to break during the simulated earthquake events. On average, 25% of demand nodes may experience insufficient water pressure levels, which can rise to 78% for the worst-case scenario.In real-life situations, failed pipes need to be isolated from the main network by closing the corresponding isolation valves to prevent the effects of individual events from spreading throughout the system. However, most utilities do not have sufficient valves installed, and the installed ones may malfunction at the time of usage. This study proposed an analysis framework for WDN pipe isolation risk considering valve condition uncertainties. It is found that the magnitude of the risk depends on the mean and variance of isolation segment sizes and demand distribution across the network.Using dynamic programming, an optimal valve placement algorithm is developed to find the best place to install isolation valves to minimize the system risk. The proposed method is tested on two real-life WDNs. Comparing to the existing valve placement configuration, the proposed configuration significantly reduces the pipe isolation risk of the system. Furthermore, the proposed valve placement strategy produces a more robust network than the original one regarding valve failure scenarios. Pipe isolation risks are significantly reduced at all tested failure rates, and the risk-increasing trend (as the valve failure rate increases) is effectively restrained.Due to resource constraints, it is impractical for water utilities to maintain all the isolation valves in a system. This study proposes a method to rank the isolation valves based on their potential failure consequences. The valve ranking algorithm utilizes network analysis methods and machine learning techniques to label valve maintenance priorities automatically. Simulation on real-life WDNs shows that applying the proposed valve maintenance strategy effectively reduces both the direct and indirect risk for the tested networks, especially under high valve failure rate cases.
일반주제명  
Civil engineering.
일반주제명  
Environmental engineering.
일반주제명  
Water resources management.
키워드  
Water distribution networks
키워드  
Water infrastructure
키워드  
HydrauSim
키워드  
Pipe isolation risks
키워드  
Earthquake events
기타저자  
University of California, Berkeley Civil and Environmental Engineering
기본자료저록  
Dissertations Abstracts International. 85-03B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 소재불명신고
  • 나의폴더
  • 우선정리요청
  • 비도서대출신청
  • 야간 도서대출신청
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TF07561 전자도서
마이폴더 부재도서신고 비도서대출신청

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련 인기도서

로그인 후 이용 가능합니다.