본문

Operational Stability of Perovskite and Organic Solar Cells for Efficient Energy Conversion and See-Through Applications- [electronic resource]
Operational Stability of Perovskite and Organic Solar Cells for Efficient Energy Conversio...
내용보기
Operational Stability of Perovskite and Organic Solar Cells for Efficient Energy Conversion and See-Through Applications- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214100345
ISBN  
9798379720766
DDC  
621.3
저자명  
Liu, Tianran.
서명/저자  
Operational Stability of Perovskite and Organic Solar Cells for Efficient Energy Conversion and See-Through Applications - [electronic resource]
발행사항  
[S.l.]: : Princeton University., 2023
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2023
형태사항  
1 online resource(223 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
주기사항  
Advisor: Loo, Yueh-Lin.
학위논문주기  
Thesis (Ph.D.)--Princeton University, 2023.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약Thin-film solar cells based on organic and perovskite semiconductors have emerged as promising energy generation technologies in recent years. However, their poor stability must be addressed before they can be widely deployed. This thesis explores the degradation mechanisms of several state-of-the-art perovskite and organic photovoltaic cells and develops strategies to improve their stability by introducing new materials, device structures, and protective coatings.First, we studied the photostability of organic photovoltaics comprising Y-series non-fullerene acceptors-a ubiquitous class of electron acceptors among state-of-the-art high-efficiency organic photovoltaics. We found that UV light photochemically degrades these materials and induces trap formation, which causes solar cell degradation. To address this issue, we demonstrated that UV-absorbing down-conversion layers can effectively block UV radiation from solar cells and extend their lifetimes. Next, we investigated the operational stability of UV-absorbing photovoltaics that have potential utility for transparent applications such as solar windows. Among UV-absorbing organic photovoltaics containing contorted hexabenzocoronene derivatives, we found that morphological degradation of halogenated acceptors deteriorates the active layer/electrode interface which reduces charge extraction and photovoltaic performance. This degradation was not readily mitigatable without new materials choices. We thus developed an all-inorganic UV-absorbing perovskite, CsPbCl2.5Br0.5, using thermal co-evaporation of CsCl, CsBr and PbCl2. Transparent photovoltaics employing this absorber were found to be highly stable while also demonstrating record-high average visible transmittance, a near-perfect color-rendering index, sufficient power output for low-power applications that prioritize aesthetics, large-area scalability, and high yields.Finally, we extended our study of inorganic perovskite stability to broadband-absorbing CsPbI3. We revealed that interfacial strain in CsPbI3 at the perovskite/electron-transport layer interface accelerates CsPbI3 polymorphic transformation, which is the primary degradation mode for CsPbI3 solar cells. By introducing a flexible alkyltrimethoxysilane layer at this interface, we eliminated the interfacial strain, leading to improved phase/device stability and enhanced interfacial charge transfer for higher device power-conversion efficiencies. Collectively, this thesis elucidates the degradation processes of a variety of organic and perovskite photovoltaics and introduces strategies to mitigate their degradation. This comprehensive understanding of degradation is instructive for future accelerated aging methods on emerging thin-film solar cells to evaluate their stability prior to commercialization.
일반주제명  
Electrical engineering.
일반주제명  
Chemical engineering.
일반주제명  
Materials science.
일반주제명  
Alternative energy.
키워드  
Inorganic perovskites
키워드  
Organic photovoltaics
키워드  
Perovskite solar cells
키워드  
Solar cell stability
키워드  
Thin-film solar cells
키워드  
Transparent photovoltaics
기타저자  
Princeton University Electrical and Computer Engineering
기본자료저록  
Dissertations Abstracts International. 84-12B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 소재불명신고
  • 나의폴더
  • 우선정리요청
  • 비도서대출신청
  • 야간 도서대출신청
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TF07646 전자도서
마이폴더 부재도서신고 비도서대출신청

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련 인기도서

로그인 후 이용 가능합니다.