본문

Safe Online Decision-Making for Non-stationary Systems- [electronic resource]
Safe Online Decision-Making for Non-stationary Systems - [electronic resource]
내용보기
Safe Online Decision-Making for Non-stationary Systems- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214100349
ISBN  
9798380381178
DDC  
658
저자명  
Ding, Yuhao.
서명/저자  
Safe Online Decision-Making for Non-stationary Systems - [electronic resource]
발행사항  
[S.l.]: : University of California, Berkeley., 2023
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2023
형태사항  
1 online resource(136 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
주기사항  
Advisor: Lavaei, Javad.
학위논문주기  
Thesis (Ph.D.)--University of California, Berkeley, 2023.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약Despite several progresses of control-theoretic techniques in the past decade, these methods still struggle to bridge the widening gap between theory and reality, which is exacerbated by the increasing complexity, uncertainty, and safety requirements. Consequently, the creation of online control algorithms for safety-critical applications in non-stationary environments could pave the way for a new chapter in modern control theory, substantially enhancing the reliability of intelligent systems as they function in dynamic, uncertain, and potentially hostile conditions subject to physical and computational limitations. Safe non-stationary decision-making not only encompasses the core challenges of traditional decision-making but also presents new hurdles, such as (i) fast adaptation under the non-stationary environments, (ii) global optimality convergence of the non-convex optimization, (iii) continual balancing of objective and constraints. The above challenges go beyond current capabilities in computation and theory and manifest in various aspects of practical and theoretical interests, from sample complexity and non-convergence issues to computational tractability and enforcement of safety constraints for real-time control. This thesis aims to pioneer system operation at the nexus of reinforcement learning, online learning, statistical learning, and nonlinear optimization. The design of provably efficient and safe online decision-making algorithms that exploit prediction and prior knowledge while grappling with the effects of dynamic feedback and non-stationary environment will push the frontiers of computational verification and synthesis of control policies for safety-critical systems.To overcome these challenges and realize the full potential of online decision-making approaches for adaptability and performance gains, this thesis aims to extend the foundational knowledge in systems and control and broaden our understanding of performance limits and engineering trade-offs when the system must operate outside of the assumptions of known models and needs to adapt to its environment in real-time. In particular, we develop a new mathematical foundation and a set of computational tools for the design of safe online decision-making algorithms that can be deployed in environments that undergo changes. Along this line, we will address the following objectives: (i) escaping spurious local minimum trajectories in online time-varying non-convex optimization, (ii) provably efficient primal-dual reinforcement learning for CMDPs with non-stationary objectives and constraints, (iii) non-stationary risk-sensitive reinforcement learning with near-optimal dynamic regret, adaptive detection, and separation design.
일반주제명  
Industrial engineering.
일반주제명  
Computer science.
키워드  
Non-stationarity
키워드  
Reinforcement learning
키워드  
Safety requirements
키워드  
Sequential decision-making
키워드  
Intelligent systems
기타저자  
University of California, Berkeley Industrial Engineering & Operations Research
기본자료저록  
Dissertations Abstracts International. 85-03B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 소재불명신고
  • 나의폴더
  • 우선정리요청
  • 비도서대출신청
  • 야간 도서대출신청
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TF07660 전자도서
마이폴더 부재도서신고 비도서대출신청

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련 인기도서

로그인 후 이용 가능합니다.