본문

Targeting Cellular Retinoic Acid Binding Protein 1 to Modulate Non-Canonical Retinoic Acid Signaling- [electronic resource]
Targeting Cellular Retinoic Acid Binding Protein 1 to Modulate Non-Canonical Retinoic Acid...
ข้อมูลเนื้อหา
Targeting Cellular Retinoic Acid Binding Protein 1 to Modulate Non-Canonical Retinoic Acid Signaling- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214101914
ISBN  
9798380857840
DDC  
615
저자명  
Nhieu, Jennifer.
서명/저자  
Targeting Cellular Retinoic Acid Binding Protein 1 to Modulate Non-Canonical Retinoic Acid Signaling - [electronic resource]
발행사항  
[S.l.]: : University of Minnesota., 2023
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2023
형태사항  
1 online resource(159 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 85-05, Section: B.
주기사항  
Advisor: Wei, Li-Na.
학위논문주기  
Thesis (Ph.D.)--University of Minnesota, 2023.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약All-trans-retinoic acid (atRA) is the principle active metabolite of vitamin A and is essential for almost all biological functions. Canonically, atRA exerts its actions through retinoic acid receptors (RARs) located in the nucleus to regulate gene transcription. atRA also possesses "non-canonical activities" that modulate cell signaling, and is defined by (1) RAR-independence, (2) a rapid time-scale and (3) cytosolic localization. The primary mediator of this non-canonical activity is the highly conserved cellular retinoic acid binding protein 1 (CRABP1). CRABP1 was previously thought to only function in the binding and sequestration of atRA to regulate cellular bio-availability. However, studies of two non-canonical pathways have established CRABP1 as a mediator of non-canonical atRA activity. The first is CRABP1-mediated regulation of the mitogen activated protein kinase (MAPK) pathway with physiological and disease relevance in stem cell proliferation, cancer, immune regulation, and obesity. The second is CRABP1-mediated regulation of calcium (Ca2+)-calmodulin dependent kinase II (CaMKII) activation with physiological and disease relevance in cardiac dysfunction and motor neuron degenerative diseases such as amyotrophic lateral sclerosis (ALS). Nuclear Magnetic Resonance (NMR) spectroscopy and molecular studies determined the structural and molecular mechanism underlying CRABP1-mediated regulation of CaMKII activation. Mechanistically, CRABP1 preferentially complexes with the inactive form of CaMKII to ultimately dampen CaMKII activation. Alanine mutagenesis studies have determined that CRABP1 residues within a proposed CaMKII interaction surface and an allosteric site maintain this preference. Mutation of these residues can shift CRABP1 preference towards the active form of CaMKII. Two novel CRABP1 ligands (C4 and C32) were also characterized as potential therapeutic agents that may be developed to target the CRABP1-CaMKII pathway in motor neuron (MN) diseases. In a reconstituted MN culture model, C4 and C32 can dampen CaMKII activation in a CRABP1-dependent manner. In an immortalized MN cell line (MN1) C4 and C32 can protect against excitotoxic-mediated MN death induced by ionomycin treatment. The primary sequence of CRABP1 is extremely conserved among animal species, with only one substitution observed at amino acid position 86, suggesting important functional constraints placed upon CRABP1 sequence during evolution. Data mining of reported human studies was performed to determine the relevance of CRABP1 in human health and disease. Associations of CRABP1 with various human diseases were identified, including altered human CRABP1 gene expression and the presence of variants in cancers, ALS, and several rare diseases. The studies within this dissertation elucidate the structural and molecular mechanism of CRABP1-mediated regulation of cell signaling, specifically in CaMKII activation. The results suggest a potential therapeutic approach in targeting the CRABP1-CaMKII pathway with CRABP1-selective ligands to manage MN diseases. These results expand our understanding of CRABP1 in mediating the non-canonical activity of atRA hormone, particularly in modulating various cell signaling pathways to maintain health. The results also uncover complex mechanisms through which CRABP1-selective, atRA-like compounds may be further developed in therapeutic applications.
일반주제명  
Pharmacology.
일반주제명  
Neurosciences.
일반주제명  
Pharmaceutical sciences.
키워드  
atRA
키워드  
Beta-barrel protein
키워드  
CRABP1
키워드  
Kinase
키워드  
Motor neuron
키워드  
Non-canonical retinoic acid activity
기타저자  
University of Minnesota Pharmacology
기본자료저록  
Dissertations Abstracts International. 85-05B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
New Books MORE
최근 3년간 통계입니다.

ค้นหาข้อมูลรายละเอียด

  • จองห้องพัก
  • ไม่อยู่
  • โฟลเดอร์ของฉัน
  • ขอดูแรก
  • 비도서대출신청
  • 야간 도서대출신청
วัสดุ
Reg No. Call No. ตำแหน่งที่ตั้ง สถานะ ยืมข้อมูล
TF08138 전자도서
마이폴더 부재도서신고 비도서대출신청

* จองมีอยู่ในหนังสือยืม เพื่อให้การสำรองที่นั่งคลิกที่ปุ่มจองห้องพัก

해당 도서를 다른 이용자가 함께 대출한 도서

Related Popular Books

로그인 후 이용 가능합니다.