본문

Rational Design of Nanocatalysts for Renewable Energy Conversion- [electronic resource]
Rational Design of Nanocatalysts for Renewable Energy Conversion - [electronic resource]
내용보기
Rational Design of Nanocatalysts for Renewable Energy Conversion- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214095901
ISBN  
9798380622059
DDC  
540
저자명  
Chen, Shouping.
서명/저자  
Rational Design of Nanocatalysts for Renewable Energy Conversion - [electronic resource]
발행사항  
[S.l.]: : University of California, Berkeley., 2021
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2021
형태사항  
1 online resource(108 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 85-05, Section: B.
주기사항  
Advisor: Yang, Peidong.
학위논문주기  
Thesis (Ph.D.)--University of California, Berkeley, 2021.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약Increasing fossil fuel consumption and CO2 emission have raised great concerns about our energy and environment future. In order to solve these problems, on the one hand, it is critical to develop alternative, renewable energy sources, such as fuel cell powered by H2, on the other hand, it is also important to reduce the existing CO2 into value-added products, such as fuels and fine chemicals. Electrocatalysis using nanomaterials plays an essential role in completing these two tasks by transforming the reactants into the target products efficiently along with the energy conversion process. The activity, stability, and selectivity of nanocatalysts highly depend on their structures, which require careful and rational design to achieve desired properties. Therefore, this dissertation focuses on the development of multiple effective strategies to improve the performance of different nanocatalysts for either fuel cell or CO2 reduction reaction (CO2RR) electrocatalysis.First, post-synthesis treatment has been recognized as a key step to tailor the catalytic behavior of Pt-based alloys. In the second chapter, we present the effects of catalyst processing on the electrocatalytic property of Pt-Ni nanoframes for cathodic oxygen reduction reaction (ORR) in fuel cell. The Pt-Ni nanoframes are made by corroding the Ni-rich phase from solid rhombic dodecahedral particles. Among the three different corrosion procedures, electrochemical corrosion leads to the highest initial specific activity by retaining more Ni in the nanoframes. However, the high activity gradually goes down in a subsequent stability test due to continuous Ni loss and concomitant surface reconstruction. In contrast, the best stability is achieved by a more-aggressive corrosion using oxidative nitric acid. Although the initial activity is compromised, this procedure imparts a less-defective surface, and thus, the specific activity drops by only 7% over 30,000 potential cycles. These results indicate a delicate trade-off between the activity and stability of Pt-Ni nanoframe electrocatalysts.Second, controlled synthesis of nanoparticles with optimal morphology and composition is crucial to promoting their catalytic performance. In the third chapter, we demonstrate the integration of highly open nanoframe morphology and catalytically active Pt-Co composition to develop Pt-Co nanoframes. Their ORR mass activity in acidic media is as high as 0.40 A mgPt-1 initially and 0.34 A mgPt-1 after 10,000 potential cycles at 0.95 V versus reversible hydrogen electrode (VRHE). Moreover, their mass activity for anodic methanol oxidation reaction (MOR) in alkaline fuel cell is up to 4.28 A mgPt-1 and is 4-fold higher than that of commercial Pt/C catalyst. Experimental studies indicate that the weakened binding of intermediate carbonaceous poisons contributes to the enhanced MOR behavior. More impressively, the Pt-Co nanoframes also show excellent stability under long-term testing, which could be attributed to the negligible electrochemical Co dissolution.Third, introducing a second material, such as the metal-organic framework (MOF), is a promising strategy to add catalytic functions beyond metal nanoparticles. In the fourth chapter, we demonstrate the combination of Pt-Ni nanoframe and zeolitic imidazolate framework-8 (ZIF-8), which is a special MOF, into an individually encapsulated frame-in-frame structure. Via surface functionalization, the Pt-Ni nanoframe is first embedded in ZIF-8 to achieve a single core-shell structure, as evidenced by the three-dimensional tomography. The growth trajectory of such frame-in-frame nanocomposite is tracked, revealing that ZIF-8 first nucleates in the solution, then attaches to the surface of the nanoframe, and finally grows to capture the entire nanoframe, enabling the one-in-one encapsulation. Next, by utilizing ZIF-67 as the sacrificial layer, the Pt-Ni nanoframe is further solely encased in ZIF-8 to form a single yolk-shell structure, which has a cavity between the core and the shell. The obtained frame-in-frame structures have potential applications in size-selective or tandem catalysis to produce fine chemicals.Fourth, long-range atomic ordering in nanocrystals holds the promise of unique catalytic properties for many reactions. In the fifth chapter, we report the preparation of Cu3Au intermetallic nanowires by using Cu Au core-shell nanowires as the precursors. With appropriate Cu/Au stoichiometry, the Cu Au core-shell nanowires are transformed into fully ordered Cu3Au nanowires under thermal annealing. Thermally-driven atomic diffusion, which is facilitated by the abundant twin boundaries, accounts for the ordering process. The resulting Cu3Au intermetallic nanowires have uniform and accurate atomic positioning in the crystal lattice, which enhances the nobility of Cu. No obvious copper oxides are observed in fully ordered Cu3Au nanowires after annealing in air at 200 oC, a temperature that is much higher than those observed in Cu Au core-shell and pure Cu nanowires. The acquired Cu3Au intermetallic nanowires are promising candidates for either ORR or CO2RR electrocatalysis.Fifth, covalently bonded surface ligands often block the active metal sites and limit the reactivity of nanocluster catalysts. In the sixth chapter, we investigate the ligand removal process for Au25 nanoclusters using both thermal and electrochemical treatments, as well as its impact on the CO2 electroreduction to CO. The Au25 nanoclusters are synthesized with 2-phenylethanethiol as the capping agent and anchored on sulfur-doped graphene. The thiolate ligands can be readily removed under either thermal annealing at 180 oC or electrochemical biasing at -0.5 VRHE. However, these ligand-removing conditions also trigger the structural evolution of Au25 nanoclusters concomitantly. The thermally and electrochemically treated Au25 nanoclusters show enhanced activity and selectivity for the electrochemical CO2-to-CO conversion than their pristine counterpart, which is attributed to the increased exposure of undercoordinated Au sites on the surface after ligand removal.
일반주제명  
Chemistry.
일반주제명  
Energy.
일반주제명  
Materials science.
일반주제명  
Engineering.
일반주제명  
Nanoscience.
키워드  
Catalysis
키워드  
Nanomaterial
키워드  
Renewable energy
키워드  
Fossil fuel
기타저자  
University of California, Berkeley Materials Science & Engineering
기본자료저록  
Dissertations Abstracts International. 85-05B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 소재불명신고
  • 나의폴더
  • 우선정리요청
  • 비도서대출신청
  • 야간 도서대출신청
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TF08668 전자도서
마이폴더 부재도서신고 비도서대출신청

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련 인기도서

로그인 후 이용 가능합니다.