본문

Physical Human-Robot Interaction in Spherical Tensegrity Robots- [electronic resource]
Physical Human-Robot Interaction in Spherical Tensegrity Robots - [electronic resource]
내용보기
Physical Human-Robot Interaction in Spherical Tensegrity Robots- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214095907
ISBN  
9798380619424
DDC  
629.8
저자명  
Barkan, Andrew Robert.
서명/저자  
Physical Human-Robot Interaction in Spherical Tensegrity Robots - [electronic resource]
발행사항  
[S.l.]: : University of California, Berkeley., 2021
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2021
형태사항  
1 online resource(110 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 85-04, Section: B.
주기사항  
Advisor: Agogino, Alice M.
학위논문주기  
Thesis (Ph.D.)--University of California, Berkeley, 2021.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약As intelligent robots become more pervasive in the facilitation and execution of historically human-centric tasks, we, as roboticists, must continue to improve upon our methodologies for intuitive and efficient human-robot interaction (HRI). This is especially relevant to robotic systems that are intended to operate in close proximity to humans where physical contact is either intentional or inevitable. The vast majority of research in physical human-robot interaction (pHRI) has focused on exclusively anthropomorphic realizations of interactions that involve complex and rigid traditional serial robotic systems, which rely on sophisticated sensing and control implementations to accommodate physical contact. Furthermore, the breadth of the pHRI research domain has remained limited by the largely anthropocentric perspective of prioritizing human-like interactions as well as the overwhelming emphasis placed on contact avoidance as an essential feature in autonomous and mobile robotic systems. In contrast, the somewhat recent proliferation of soft robotic systems, like tensegrity robots, built with an intrinsic tolerance for physical contact have shown tremendous promise as platforms for enabling pHRI.Tensegrity robots are a class of soft robotic systems whose structures consist of a set of rigid bodies suspended in isolation via a network of cable elements. The advantages of a tensegrity robot include low density, configurable compliance, and structural resilience at the cost of greater complexity in modeling and control. These unique mechanical characteristics make tensegrity robots well-suited to applications that demand robustness to physical contact. In this dissertation, we examine the design and implementation of a force-sensing tensegrity as a robotic platform for enabling novel physical interactions and for exploring new avenues for pHRI with compliant robotic systems. First, we explore the potential for a new language of pHRI that leverages non-anthropomorphic, compliant, and mobile robotic systems. We then present the Class-1 spherical six-bar tensegrity topology as a scaffolding for implementing the detection of physical human-robot interactions. Several force-sensing tensegrity prototypes are designed, constructed, and tested to explore the capacity for reliable contact detection. To demonstrate the ability of the force-sensing tensegrity to distinguish between physical interactions, we propose a methodology for inferring intent from physical interactions using a supervised learning framework that features contemporary classification algorithms including deep neural networks. Additionally, we conduct a series of human subject experiments to examine the intuitiveness of physical interaction with the tensegrity as well as the robustness and generalizability of the aforementioned supervised learning framework.There are broad implications from these results on the future of pHRI research leveraging similar robotic implementations, which could be capable of offering completely new functionalities for physical interaction. The methodologies and frameworks presented here can be extended to various tensegrity topologies, fully actuated tensegrity platforms, and even compliant robotic systems outside the domain of tensegrities. As a result, we hope that pHRI researchers will be inspired to utilize compliant systems like our force-sensing tensegrity as viable platforms for investigating physical interaction. In summation, the problems addressed here constitute an exciting and potentially paradigm-shifting investigation of the utility of tensegrity robots as platforms for a new language and embodiment of pHRI with compliant robotic systems.
일반주제명  
Robotics.
일반주제명  
Mechanical engineering.
일반주제명  
Computer science.
키워드  
Deep learning
키워드  
Disaster response
키워드  
Force sensing
키워드  
Soft robotics
키워드  
Tensegrity
기타저자  
University of California, Berkeley Mechanical Engineering
기본자료저록  
Dissertations Abstracts International. 85-04B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 소재불명신고
  • 나의폴더
  • 우선정리요청
  • 비도서대출신청
  • 야간 도서대출신청
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TF08681 전자도서
마이폴더 부재도서신고 비도서대출신청

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련 인기도서

로그인 후 이용 가능합니다.