본문

Boosting Max-Pressure Signal Control Into Practical Implementation: Methodologies and Simulation Studies in City Networks- [electronic resource]
Boosting Max-Pressure Signal Control Into Practical Implementation: Methodologies and Simu...
内容资讯
Boosting Max-Pressure Signal Control Into Practical Implementation: Methodologies and Simulation Studies in City Networks- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214101916
ISBN  
9798380599207
DDC  
385
저자명  
Xu, Te.
서명/저자  
Boosting Max-Pressure Signal Control Into Practical Implementation: Methodologies and Simulation Studies in City Networks - [electronic resource]
발행사항  
[S.l.]: : University of Minnesota., 2023
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2023
형태사항  
1 online resource(230 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 85-04, Section: B.
주기사항  
Advisor: Levin, Michael W.
학위논문주기  
Thesis (Ph.D.)--University of Minnesota, 2023.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약This dissertation presents innovative modifications to the Max-Pressure (MP) control policy, an adaptive traffic signal control strategy tailored to various urban traffic conditions. The max-pressure control offers two pivotal advantages that underscore its significance for in-depth research and future implementation: Firstly, MP operates on a decentralized basis, enabling real-time solutions. Secondly, MP control guarantees maximum stability, implying it can accommodate as much given demand as any alternative signal timing strategy. Initially, the MP control policy was adapted to transit signal priority (MP-TSP). It delivered enhanced bus travel times, outperforming both fixed-time signal controls with TSP and other adaptive signal controls in efficiency. Subsequently, the pedestrian-friendly max-pressure signal controller (Ped-MP) was developed. This marked a pioneering effort in crafting an MP control to boost pedestrian access without compromising vehicle throughput. The Ped-MP, backed by analytical proof for maximum stability, illustrated an inverse relation between pedestrian delay and tolerance time during simulations on the Sioux Falls network. This suggests the potential for urban spaces that are more pedestrian-oriented, even in areas of elevated pedestrian traffic. The third innovation addressed the practical feasibility of the position-weighted back-pressure (PWBP) controller. Although the initial PWBP controller was effective in simulations, it was found to be impractical due to its need for density information from everywhere of the road link. This observation paved the way for the approximate position-weighted back-pressure (APWBP) control, which significantly reduces sensor requirements by utilizing only two loop detectors per link (one downstream and one upstream). A comparative analysis revealed that the APWBP's efficacy closely paralleled the original PWBP, validating its practicality. Finally, recognizing the MP controller's deficit in coordinated phase selection, the Smoothing-MP approach was conceptualized. Incorporating signal coordination, this novel strategy not only maintained its maximum stability properties but also amplified traffic flow efficiency, as confirmed by mathematical proofs and numerical studies in both the Grid Network and the Downtown Austin Network.
일반주제명  
Transportation.
일반주제명  
Engineering.
키워드  
Distributed signal control
키워드  
Max-pressure signal control
키워드  
Simulations
키워드  
Stability
키워드  
Traffic flow
기타저자  
University of Minnesota Civil Engineering
기본자료저록  
Dissertations Abstracts International. 85-04B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
New Books MORE
최근 3년간 통계입니다.

高级搜索信息

  • 预订
  • 不存在
  • 我的文件夹
  • 第一种观点
  • 비도서대출신청
  • 야간 도서대출신청
材料
注册编号 呼叫号码. 收藏 状态 借信息.
TF08734 전자도서
마이폴더 부재도서신고 비도서대출신청

*保留在借用的书可用。预订,请点击预订按钮

해당 도서를 다른 이용자가 함께 대출한 도서

Related Popular Books

로그인 후 이용 가능합니다.