본문

Dynamical Diffraction: Friend or Foe? 4D-STEM Measurements Robust To Multiple Scattering- [electronic resource]
Dynamical Diffraction: Friend or Foe? 4D-STEM Measurements Robust To Multiple Scattering -...
Содержание
Dynamical Diffraction: Friend or Foe? 4D-STEM Measurements Robust To Multiple Scattering- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214100321
ISBN  
9798380621786
DDC  
620.5
저자명  
Zeltmann, Steven.
서명/저자  
Dynamical Diffraction: Friend or Foe? 4D-STEM Measurements Robust To Multiple Scattering - [electronic resource]
발행사항  
[S.l.]: : University of California, Berkeley., 2022
발행사항  
Ann Arbor : ProQuest Dissertations & Theses, 2022
형태사항  
1 online resource(139 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 85-04, Section: B.
주기사항  
Advisor: Minor, Andrew M.
학위논문주기  
Thesis (Ph.D.)--University of California, Berkeley, 2022.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약Four-dimensional scanning transmission electron microscopy (4D--STEM) is a modern operating mode of a transmission electron microscope in which a focused electron probe is rastered across the sample and the diffraction pattern is recorded at each position. The resulting diffraction patterns can be analyzed to obtain a wealth of local structural information, such as deformation or strain, changes in symmetry or lattice distortions, orientation of a crystal lattice, as well as to measure electric and magnetic fields. More advanced analyses, i.e. ptychography, can also extract structural information at a spatial resolution finer than the size of the electron probe.Several challenges arise in realizing these measurements: First, the sheer number of diffraction patterns recorded in a 4D-STEM experiment leads to computational challenges and puts demands on the complexity of the algorithms used to recover the structural information. Second, experimental considerations often strictly limit the number of electrons in each of the diffraction patterns, which can be mitigated through robust analysis approaches or by de-noising that takes advantage of the high dimensionality of the data. Most critically, all of the structural measurements described above are effectively trivial in the limit of thin and weakly scattering materials but become rather challenging when analyzing diffraction from a thick sample where multiple scattering effects are present.In this work, we will explore several means to mitigate these challenges. First, to handle the large quantities of data and the low number of electrons recorded by modern detectors operated at their full speed, we will show a hyperspectral denoising method based on total variation denoising and show its application to 4D--STEM datasets.The bulk of this work, however, will focus on the latter challenge: dynamical scattering. In 4D--STEM measurements of local strain or deformation, dynamical scattering causes unwanted contrast inside of diffraction disks which hinders accurate determination of the lattice. To mitigate this, we demonstrate a method for imprinting known contrast into the diffraction disks to improve the precision of the measured lattice. In measurements of the local orientation of the crystal, multiple scattering causes the diffraction disk intensities to vary in a highly nonlinear way as the crystal tilts, and as a function of the thickness of the crystal. We present a hybrid pattern-matching and simulation-matching algorithm for precisely determining both the orientation and thickness of a crystalline sample from 4D--STEM measurements. Finally, many polar structures of technological interest exist only under exacting electrical and mechanical boundary conditions and so can only be studied as a thick and heterogeneous sample. To measure polarization structures in such materials, we construct a dynamical scattering model for the system and demonstrate an optimization procedure which recovers local polar order from large-area scans of a thick multilayer sample.
일반주제명  
Nanoscience.
일반주제명  
Physics.
일반주제명  
Materials science.
일반주제명  
Engineering.
키워드  
Electron probe
키워드  
Magnetic fields
키워드  
Diffraction patterns
키워드  
Multiple scattering effects
기타저자  
University of California, Berkeley Materials Science & Engineering
기본자료저록  
Dissertations Abstracts International. 85-04B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
New Books MORE
최근 3년간 통계입니다.

Подробнее информация.

  • Бронирование
  • не существует
  • моя папка
  • Первый запрос зрения
  • 비도서대출신청
  • 야간 도서대출신청
материал
Reg No. Количество платежных Местоположение статус Ленд информации
TF08768 전자도서
마이폴더 부재도서신고 비도서대출신청

* Бронирование доступны в заимствований книги. Чтобы сделать предварительный заказ, пожалуйста, нажмите кнопку бронирование

해당 도서를 다른 이용자가 함께 대출한 도서

Related Popular Books

로그인 후 이용 가능합니다.