본문

Information Content and Analysis of X-Ray Absorption Spectroscopy and X-Ray Emission Spectroscopy Using Machine Learning- [electronic resource]
Information Content and Analysis of X-Ray Absorption Spectroscopy and X-Ray Emission Spect...
내용보기
Information Content and Analysis of X-Ray Absorption Spectroscopy and X-Ray Emission Spectroscopy Using Machine Learning- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214101231
ISBN  
9798379909284
DDC  
530
저자명  
Tetef, Samantha.
서명/저자  
Information Content and Analysis of X-Ray Absorption Spectroscopy and X-Ray Emission Spectroscopy Using Machine Learning - [electronic resource]
발행사항  
[S.l.]: : University of Washington., 2023
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2023
형태사항  
1 online resource(314 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
주기사항  
Advisor: Seidler, Gerald T.
학위논문주기  
Thesis (Ph.D.)--University of Washington, 2023.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약Data science and machine learning (ML) methods are revolutionizing scientific analysis and data processing. As a case in point, ML applied to X-ray spectroscopies has recently exploded, showcasing its effectiveness in fields such as electrical energy storage and chemical catalysis. Here, I include comprehensive computational studies of ML techniques applied to X-ray spectra, including X-ray absorption near edge structure (XANES) and valence-to-core X-ray emission spectra (VtC-XES). First, I utilize unsupervised ML to extract import chemical fingerprints and information content in sulforganics and phosphorganics, elucidating important and sometimes surprising correlations between spectral content and elemental coordination or electronic structure. In this work, I compare different unsupervised ML techniques, namely principal component analysis (PCA), variational autoencoder (VAE), t-distributed stochastic neighbor embedding (t-SNE), and uniform manifold approximation and projection (UMAP), and I find important benefits from the added flexibility of similarity-based manifold mappings. Additionally, I help develop open-source tools for future researchers to utilize, including an API that interacts with PubChem to efficiently download and store metadata. Next, I use ML to improve the reliability of data analysis and decrease computational time in the context of XANES imaging experiments. To do so, I utilize dimensionality reduction and clustering to perform image segmentation and then identified phase composition using linear combination fitting. By decoupling the domain identification from the phase identification, I provide a more robust way to handle noise that was not reliant on obtaining appropriate linear combination fitting results. Moreover, my pipeline is flexible enough to uniquely incorporate auxiliary data or multimodal characterization measurements. Finally, I use feature selection to accelerate high-throughput experimental design. Specifically, I use Recursive Feature Elimination to select the most important energies in XANES spectra to measure in the context of a reference library. This approach is validated by appropriate analysis on these reduced-energy spectra using a nano-XANES image. All these approaches and tools are broadly applicable to X-ray spectroscopy on other chemical systems or and are also likely to find use in other spectroscopy techniques.
일반주제명  
Physics.
일반주제명  
Nanotechnology.
일반주제명  
Optics.
키워드  
Machine learning
키워드  
X-ray spectroscopy
키워드  
Variational autoencoder
기타저자  
University of Washington Physics
기본자료저록  
Dissertations Abstracts International. 85-01B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 소재불명신고
  • 나의폴더
  • 우선정리요청
  • 비도서대출신청
  • 야간 도서대출신청
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TF09073 전자도서
마이폴더 부재도서신고 비도서대출신청

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련 인기도서

로그인 후 이용 가능합니다.