본문

Molecular-Scale Exploration of Interactions Between Drops and Particles with a Polymeric Layer- [electronic resource]
Molecular-Scale Exploration of Interactions Between Drops and Particles with a Polymeric L...
내용보기
Molecular-Scale Exploration of Interactions Between Drops and Particles with a Polymeric Layer- [electronic resource]
자료유형  
 학위논문파일 국외
최종처리일시  
20240214100108
ISBN  
9798379753030
DDC  
539
저자명  
Etha, Sai Ankit.
서명/저자  
Molecular-Scale Exploration of Interactions Between Drops and Particles with a Polymeric Layer - [electronic resource]
발행사항  
[S.l.]: : University of Maryland, College Park., 2023
발행사항  
Ann Arbor : : ProQuest Dissertations & Theses,, 2023
형태사항  
1 online resource(153 p.)
주기사항  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
주기사항  
Advisor: Das, Siddhartha.
학위논문주기  
Thesis (Ph.D.)--University of Maryland, College Park, 2023.
사용제한주기  
This item must not be sold to any third party vendors.
초록/해제  
요약Surface-grafted polymer molecules have been extensively employed for surface modifications as they ensure changes to the inherent physical/chemical properties of surface. Bottom-up surface processing with well-defined polymeric structures becomes increasingly important in many current technologies. Polymer brushes, which are polymer molecules grafted to a substrate by its one end at close enough proximity (thereby ensuring that they stretch out like the "bristles" of a toothbrush), provide an exemplary system of materials capable of achieving such a goal. In particular, producing functional polymer brushes with well-defined chemical configurations, densities, architectures, and thicknesses on a material surface has become increasingly important in many fields.In my dissertation, I employ Molecular Dynamics (MD) simulations to study the interplay of interactions between nanoparticles (NPs), solvent drops and polymer grafted surfaces under various system conditions. This study will help us to understand (1) the wetting dynamics of brush grafted surfaces and the associated brush conformational changes, (2) polymer-insoluble solvophilic NP assembly in brush grafted surfaces and the steric interactions driven establishment of direct contacts between a NP and a polymer layer (highly phobic to the NP), and (3) microphase separation and distillation-like behavior of grafted polymer bilayers interacting with a binary liquid mixture, and the resulting nanofluidic valving behavior of swollen polymer bilayers in a weak interpenetration regime.In Chapter 1, I provide the background and motivation of the research presented in this thesis.In Chapter 2, I study the spreading and imbibition of a liquid drop on a porous, soft, solvophilic, and responsive surface represented by a layer of polymer molecules grafted on a solvophilic solid. These polymer molecules are in a crumpled and collapsed globule-like state before the interaction with the drop, but transition to a "brush"-like state as they get wetted by the liquid drop. We hypothesize that for a wide range of densities of polymer grafting (σg), the drop spreading is dictated by the balance of the driving inertial pressure and balancing viscoelastic dissipation, associated with the spreading of the liquid drop on the polymer layer that undergoes globule-to-brush transition and serves as the viscoelastic solid. Finally, I argue that these simulations raise the possibility of designing soft and "responsive" and widely deployable liquid-infused surfaces where the polymer grafted solid, with the polymer undergoing a globule-to-brush transition, serving as the responsive "surface".In Chapter 3, I employ coarse-grained molecular dynamics (MD) simulations and establish that under appropriate conditions, it is possible to develop numerous stable direct contacts between a polymer-insoluble NP and a solvated polymer layer (the polymer layer is phobic to the NP, while the solvent/liquid is philic to both the NP and the polymer). The NP is driven inside a layer of collapsed and phobic (to the NP) polymer molecules by a drop of this liquid (which is philic to both the NP and the polymer layer). The liquid molecules imbibe and diffuse inside the polymer layer, but the NP remains localized within the polymer layer, due to large Steric effects, ensuring the establishment of highly stable numerous direct contacts between the NP and the highly phobic polymer molecules. Finally, I argue that our finding will open up avenues for leveraging NP-polymer interactions for a myriad of applications even for cases where the polymer molecules are phobic to the NPs.In Chapter 4, I study the interaction of a binary mixture drop, containing two-miscible-liquids, with a polymer functionalized nanochannel that is philic to one of the liquids and phobic to the other. Liquid-liquid phase separation is achieved due to the asymmetry of interaction of the liquid species and we observe distillation like behavior wherein the drop becomes progressively concentrated with the phobic liquid with each '"pass" with the polymer bilayer absorbing an increasing fraction of the philic liquid molecules and transitioning into the polymer brush regime. Depending on the nanochannel height, the number of allowed passes varies, as the polymer chains stretch out until the oppositely grafted layers overlap and create a dense region of liquid infused polymer layers that act as a valve. Any further passage of drops through this nano-confined interpenetrating brush bilayer requires a much greater magnitude of applied force on the drop. I finally propose a design of nanovalves based on this mechanism of creating partially porous interpenetrating polymer brush layers.
일반주제명  
Molecular physics.
일반주제명  
Mechanical engineering.
일반주제명  
Nanotechnology.
일반주제명  
Fluid mechanics.
키워드  
Interfacial fluid mechanics
키워드  
Molecular modelling
키워드  
Soft matter physics
기타저자  
University of Maryland, College Park Mechanical Engineering
기본자료저록  
Dissertations Abstracts International. 84-12B.
기본자료저록  
Dissertation Abstract International
전자적 위치 및 접속  
로그인 후 원문을 볼 수 있습니다.
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 소재불명신고
  • 나의폴더
  • 우선정리요청
  • 비도서대출신청
  • 야간 도서대출신청
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TF09219 전자도서
마이폴더 부재도서신고 비도서대출신청

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련 인기도서

로그인 후 이용 가능합니다.